- Website by FEAPRO
- PZFlex亚太市场与技术支持服务平台
Tel:+86-21-51079201 Fax: +86-21-51079231
本网站授权FEAPro公司运营,FEAPro不是WAI的一部分
FEAPro公司是PZFlex的合法授权经销商. 负责产品的销售和支持提供免费计算及换能器和无损检测方案建模,在线提交技术演示要求点击这里 PZFlex|超声|换能器|PZT|cMUT|HIFU|颅内|高频|超声成像|超声治疗|无损检测|声场|探头|并行计算
PZFlex MINIMISATION OF MECHANICAL CROSS TALK IN PERIODIC PIEZOELECTRIC COMPOSITE ARRAYS
Abstract: This paper describes an investigation into mechanical cross talk within 1-3 and 2-2 connectivity piezoelectric composite array configurations, comprising a matrix of active piezoelectric elements embedded within a passive, polymeric, material. One way to take full advantage of the reported sensitivity and bandwidth improvements from single crystal materials is to configure them as a piezoelectric composite. For this work, piezoelectric ceramic, lithium niobate and single crystal pmn-pt materials are investigated as the active component in the piezocomposite array designs. Within these piezoelectric configurations, the generation of ultrasonic inter-pillar modes, which arise due to the periodicity of the active piezoelectric elements within the piezocomposite lattice, can be detrimental to the array performance. Consequently, finite element (FE) modelling, using PZFlex, is utilised to provide design techniques for the removal of these inter-pillar modes from the frequency band of interest and the realisation of unimodal piezocomposite transducer structures. Further FE modelling is used to generate dispersion data for 2-2, and doubly periodic 1-3, composite substrates. This dispersion data is used to design the linear arrays, with the objective of minimising mechanical inter-element cross talk. A comparison between the FE predicted mechanical cross coupling between array elements, for each composite material operating in air, is supported by experimentally measured data. Subsequently, the validated FE models are extended to include both operation into a solid load and the introduction of a backing material to simulate the operation of a practical NDE array transducer. The design techniques obtained from PZFlex are shown to produce arrays with low cross talk and the extent of the cross talk in manufactured and modelled ceramic and pmn-pt single crystal arrays is compared.
Introduction: This paper investigates the