- Website by FEAPRO
- PZFlex亚太市场与技术支持服务平台
Tel:+86-21-51079201 Fax: +86-21-51079231
本网站授权FEAPro公司运营,FEAPro不是WAI的一部分
FEAPro公司是PZFlex的合法授权经销商. 负责产品的销售和支持提供免费计算及换能器和无损检测方案建模,在线提交技术演示要求点击这里 PZFlex|超声|换能器|PZT|cMUT|HIFU|颅内|高频|超声成像|超声治疗|无损检测|声场|探头|并行计算
ABSTRACT
We describe experimental finite element modeling of tissue ablation by focused ultrasound. Emphasis is on nonlinear coupling of high intensity sound, temperature, and tissue properties. The numerical basis for modeling nonlinearity is an incrementally linear, timedomain, finite element algorithm solving the electromechanical and bioheat equations in 2D/3D inhomogeneous elastic and acoustic media. Nonstandard modeling issues examined include harmonic generation/absorption and focal “bubble” evolution with consistent sound and thermal redistribution. The nonlinear pressure-density relation generates harmonics that increase absorption and heating, particularly in the focal zone. In the tissues modeled, harmonic heating is negligible for peak focal intensities of a few kW/cm2. As the focal hot spot ablates tissue it may also generate “bubbles.” Prefocal growth of a bubbly region is modeled using a simple boiling threshold and strong coupling between the scattered ultrasound and temperature redistribution as the region spreads. Generally, these experiments are intended to develop a more comprehensive modeling basis for quantifying tissue ablation phenomenology.